Implementing Model Predictive Controller for
Autonomous Vehicles

Ran Jing
Robotics Engineering
Worcester Polytechnic Institute
Worcester, USA
rjing@wpi.edu

Abstract—Autonomous Vehicles have become one of the
hottest topics in the robotics field in the past decade.
Control of the vehicle is never a trivial problem. Traditional
control methods have limitations on constraints formulation
or trajectory tracking. Model Predictive Control (MPC) is
a technique that can accurately track a given trajectory
and easily add constraints. In this project, we focus on
simulation about adaptive Model Predictive Control for
autonomous vehicles. We design the control system, set up
a simulation environment for multiple driving scenarios,
implement adaptive MPC, and give an analysis of the
experimental results.

Index Terms—Model Predictive Control, Autonomous
vehicle, Lane changing, Advanced control

1. INTRODUCTION AND MOTIVATION

There have been rapid advancements in the field of
autonomous vehicles and navigation over the past few
years. Autonomous vehicles have their application is
a wide variety of fields like scientific and planetary
exploration, health technology, security, nuclear power
industry, transportation and logistics, military opera-
tions like mine deactivation, surveillance, education,
excavation, entertainment, agriculture (farm vehicles),
housekeeping, mining and exploration, inspection and
maintenance, completion of complex, dangerous and
remote environment tasks, reduction of vehicle accidents
on highways, etc.

The main components of a modern autonomous vehi-
cle are localization, perception, and control. Autonomous
Control is a challenging and vital component of au-
tonomous navigation. Most of the applications of au-
tonomous vehicles involve a fast dynamically changing
environment. Hence, it is pertinent to have a robust
and efficient control mechanism to respond to the fast-
changing environment. Model Predictive Control(MPC)
is one such technique that can be used to efficiently track
a reference trajectory and navigate through cluttered
environments. The basic idea of MPC is the use of a

Abhishek Jain
Robotics Engineering
Worcester Polytechnic Institute
Worcester, USA
ajaind @wpi.edu

Kavit Nilesh Shah
Robotics Engineering
Worcester Polytechnic Institute
Worcester, USA
kshah@wpi.edu

model to predict the output of a process over a future
time horizon by obtaining a control sequence that mini-
mizes an objective function [1]]. An analogy can be made
between the MPC and the act of driving a car [2]. The
driver knows the desired reference trajectory for a finite
horizon: his field of view of the road. Taking into account
the characteristics of the car (a mental model of the car
and speed limits, acceleration and maneuverability) and
possible roadblocks (like holes, intersections and other
cars), he will decide what action to take (increase or
decrease speed, turning direction to one side or the other)
so that the desired trajectory is traversed. This control
action is then applied for a short time and the procedure
is repeated for the next control action now with the field
of view updated.

We aim to implement the MPC technique for trajec-
tory tracking on a simulated autonomous vehicle model
based on Dubin’s car model in MATLAB. We simulate
an environment with mulitple obstacles for our vehicle
model and then design an MPC controller to navigate
our vehicle in the environment.

II. PRELIMINARIES

The simulation of an autonomous vehicle requires
modeling of the vehicle dynamics using a mathemati-
cal system of equations. In the initial work, kinematic
bicycle models were used to simulate the dynamics of
vehicles. In [4], a comparison has been made between
kinematic and dynamic system model to be simulated
with an MPC controller. For this project, we plan on
using a Dubin’s car model for simulating the vehicle
dynamics [5]]. The equations (1),(2), (3) & (4) represent
Dubin’s car model of a vehicle.

MPC

: u_,| Plant
Dynamic
Optimizer
Cost Function system v
+ [¥
Constraints model = S.tate
estimator

Fig. 1: MPC Architecture [3]].

T =wvcosf (D)

1y =wvsinf 2)
v

0= Ztan¢ 3)

v=a “4)

The system of equations describing vehicle dynamics
as described above are non-linear in nature. To simulate
this system we plan to use an adaptive Model Predictive
Control for controlling the vehicle velocity and steering
angle because of its ability to handle nonlinearities and
disturbances in the system and ability to optimize the
next immediate input while considering future trajecto-
ries and future inputs.

A Model Predictive Controller predicts future posi-
tions of the system based on the system model and
generates an optimized sequence of control input over
the horizon (a definite time span) from the current state.
From this sequence, input at the next immediate time-
step is fed to the controller and the controller, based on
this input, drives the system from the current state to an-
other state. Based on this new state, the controller again
generates a new optimized sequence of control inputs
over the horizon and feeds the next immediate input to
the controller. By application of this repeated process,
an MPC controller can drive any linear or non-linear
system, facing multiple constraints, from any initial state
to the desired state (a set point or a trajectory), even in
the presence of disturbances in the system. This renders
the use of Model Predictive Controller suitable for self-
driving cars.

The Fig [I] shows the basic architecture of the MPC
Controller. The MPC block has 3 components: The

System Model, Cost-function with Constraints, and Dy-
namic Optimizer. The system model represents the kine-
matic and dynamic model of the car system. The Cost-
function and constraints enlist the objective function
which needs to be minimized subject to various con-
straints. The dynamic optimizer integrated both system
model and objective function under the constraints to
generate the control input which is fed to the plant to
generate the system output.

The Controller will be used to track a reference trajec-
tory that will be generated using a trajectory generator.
Error based on the current trajectory and the reference
trajectory will be fed to the MPC block which will fur-
ther be processed by its components to generate the next
control input. The challenge is to change the reference
trajectory by introducing random disturbances so as to
adapt the controller to track the changing trajectories and
quickly converge to the optima.

MATLAB and its various toolboxes are used to design,
define, and implement the controller.

III. PROBLEM STATEMENT

In order to control autonomous vehicles, we need to
have a test environment, dynamic model of the vehicle,
trajectory generation algorithm, controller, and actuator.
For our project, we focus on the control problem and try
to simplify other aspects of the system.

First, since the school is temporarily closed, we have
no chance to test our methods on real robots. We will
test the controller in a simulation environment based on
Automated Driving Toolbox (for lane changing task) or
Vehicle Dynamic Blockset (for open space racing task
through traffic cones).

Second, we will use a bicycle model or car-like model
for the system dynamics. A bicycle model can be used
to represent a four-wheel vehicle. Two front wheels are
lumped into one single wheel at the midpoint of two
wheels and two back wheels are lumped in the same way.
In the rear-wheel model, the rear wheels handle longi-
tudinal driving forces and front wheels handle steering
forces.

Third, since we are trying to focus on a control
problem, trajectory optimization is not considered in the
first place. Our main goal is to minimize the error when
the controller tries to follow a specific trajectory. We
first set the vehicle a fixed trajectory(e.g. a trajectory
for lane changing) to test the controller and improve the
performance. Also, We will look to implement advanced
trajectory generation to help the vehicle decide when and
how to switch to a different lane or avoid an obstacle
after solving the control problem.

For MPC itself, the main problem is to choose a
suitable dynamic optimizer so that we can get a precise
prediction for future states and find a global optimal
control sequence for each time step. We plan to test
both linear and non-linear MPC to find a better solution.
Non-linear MPC is more precise on modeling but needs
more calculation and is more likely to fall into a local
minimum. We also build a dynamic model updating
function for adaptive MPC that can involve the influence
of speeding changing of the vehicle.

In general, in this project, we implement a non-linear
adaptive MPC controller to minimize the error in follow-
ing a given trajectory on autonomous vehicles. As our
desired goal we implement a simple trajectory generator
for tasks like lane changing and obstacle avoidance on
the road to achieve autonomous driving in specialized
scenarios.

IV. MAIN METHODS

The Model Predictive Control is the most prominent
control technique for autonomous vehicles and self-
driving cars. This possibly can be attributed to a lot
of factors including compliance with linear as well
as non-linear systems, stability, and robustness to
disturbances and offsets in the system and can track
set points as well as trajectories accurately. The MPC
controller proposed in this project works on trajectory
tracking with combined control of velocity as well as
the steering angle. Equation (5) shows the system state
vector represented by X and control inputs represented
by U. The system state consists of X, y, #, v and the
control inputs consists of acceleration or throttle and J.

X
X = g ﬁzm (5)

In this project, we build our own implementation of
the MPC controller following the architecture described
in [[10]. The following sections explain the implementa-
tion methodology in detail.

A. Linearization and Discretization

As described by equations (1), (2), (3) & (4), the
system model taken into consideration is non-linear in
nature. There are many different MPC architectures that
can work with non-linear plant models, but the MPC
architecture followed by us works on a linear system.
Thus, in order to convert the non-linear plant model into
a linear system, Jacobian linearization was employed
which computes the partial derivatives of the system

dynamics model w.r.t. state vector to obtain the A matrix
and partial derivatives w.r.t. the input vector to obtain the
B matrix as shown in equation (6). The linearized system
model is then discretized to obtain new system states as a
linear function of the current system state [[10]. Once the
system model has been linearized as well as discretized,
the next step marks the start of the iterative process for
computing the controlled inputs for the MPC controller.
All the steps described below are computed online in
each iteration for the controller.

b 8f(aa;,u)x+ Bfg;,u)u

(6)

B. State Estimator

At each point, first a set of control inputs is computed
using which, the state estimator computes the new state
based on which new control inputs are computed and
the process repeats iteratively for the prediction horizon.
An important point here being, that the control horizon
being a subset of the prediction horizon, could be of
same or lesser length that the prediction horizon. Thus
the control inputs are being computed at each iteration
till the iterator reaches the control horizon, after which
the control inputs are set to some constant value till the
end of prediction horizon. However the state estimator
estimates the state of the system till the end of prediction
horizon. This estimated of system states and control
inputs over prediction horizon are used for computing the
A and B matrices for the cost function of the optimizer
which will be discussed in the next step.

C. State Optimization

Instead of considering and trying to track the entire
trajectory at one computation like LQR, the MPC con-
troller achieves the trajectory tracking control in moving
window segments of the entire trajectory. At each time
step, the controller considers the trajectories of a finite
prediction horizon of the future time steps from current
time instance and tries to optimize the set of control
inputs obtained from previous step which could help
the system to track the desired trajectory while satis-
fying all the constraints. For realistic trajectory tracking,
constraints on x and y positions, heading directions,
velocity, steering angle, and rate of change of velocity
have been imposed. Additional constraints have been
imposed on the system to minimize the rate of change
of control inputs to avoid abrupt and sudden changes in
the system inputs. The equation (7) is the cost function
that is optimized at every time step along with all the
constraints being imposed on the same. As seen from
the equation, the Q matrix penalize the errors in system

states and the R matrix penalize the system inputs. The
optimizer minimizes the cost function J to generate an
optimized set of control inputs which would drive the
system from the current state to track the trajectory
accurately. In MATLAB™, the mpcActiveSolver has
been used for the purpose of optimization.

J=UTHU + fTU (7

min

S.t.
Tke1 — (2x Fvcosfdt) =1 (a)
Yks1 — (yx +vsinddt) =1 (b)
ki1 — (O + - tanddt) =1 (
Ukt — (v +adt) =1 (d)

c)

0m <z < 500m (e)

10m <y < 160m (f)

—r<f<m (9)

—20m/s <v <40m/s (h)

—2m/s* < a < 2m/s> (7)

—n/4<o<m/4 ())
where

H = (BTQB +R)

f=2BTQAx

D. System State Evolution

On obtaining the optimized set of control inputs from
the optimizer, the next step involves feeding the control
input from the next immediate time step into this module.
It uses a model of the system to simulate the system
dynamics and evaluates the new system state to which
the system evolves from the current state given the
control input.

On reaching the new state, the iteration for next time
instance begins from step B of the methodology and
system again goes through the same process iterating and
optimizing the control inputs on the fly. This is one of the
reasons for the MPC controller being able to overcome
non-linearities and disturbances very smoothly resulting
in a robust and an accurate trajectory tracking.

V. EXPERIMENTS AND RESULTS

In this work, in order to simulate the controller perfor-
mance with visualization, we set up a road system model
in Automated Driving Toolbox. It provides us a good
real-time display simulation environment. We can easily

add actors like vehicles and obstacles, roads and way-
points. As shown in Fig[3| (a), the vehicle is represented
by a blue box and the obstacle is represented by the red
box located on the lane of the vehicle. For the perception
of the environment, you can add a camera or LiDAR to
your vehicles. For our task, we add one camera in front
of the vehicle as shown in Fig[3[(b). The camera holds a
visible distance of 50 meters.

For tracking trajectory task, we first set a trajectory
that achieves obstacle avoidance in the Automated Driv-
ing Toolbox scenario designer by adding a series of way-
points. Then we manage to output the x-y trajectory to
a MATLAB file(as shown in Figl) and get 6 and v
trajectory based on that.

After that, we test our own MPC controller from
scratch through output trajectory files. We also test
the controller we build in SIMULINK with scenario
reader to Automated Driving Toolbox to get a real-time
visualization.

In Figl| and Figle] we can see that experimental
results tracking the given trajectory as Figld] with our
own MPC controller. We simulate the controller for 350
time steps. From sub-figure (a),(b), and (c), you can find
the controller performs fast reaction speed and small
tracking error in this specific task. We set a constant
velocity of 15 m/s for the vehicle and it takes the
controller around 50 time steps to reach the desired speed
smoothly as recorded in sub-figure(d). Also, it takes the
vehicle around 15 time steps to diminish a relatively
larger initial orientation error of 0.8 rads.

In Figl8] and Fig[] the experimental results tracking
the circular trajectory with our own MPC controller
are shown. We simulate the controller for 100 time
steps. From sub-figure (a), (b), and (c), you can find
the controller performance in this specific task. The
constant velocity is set to be 15 m/s for the vehicle.
It still takes the controller around 50 time steps to
reach the desired speed smoothly as recorded in sub-
figure(d). For this task, the tracking error is larger than
the previous task. I think this might because the steering
angle for controlling this specific task is always large
during the whole process. To be mentioned, we observe
that for both tasks, the error of tracking along the x-
axis is relatively larger than the error along the y-axis
and 6 angle. We haven’t figure out the reason why this
phenomenon appears. It might cause by the weight of
states in the design of our MPC model.

Here we would like to have a brief analysis of
the influence of the prediction horizon. In Figll] we
run the simulation multiple times with a fixed control
horizon of 5 and prediction horizon to be 5, 10, and

control strategy changing wrt prediction horizon

|
Longitudival Distance (m)

(a) (b)

Fig. 3: Building scenarios in Automated Driving Tool-
box.

Position
~
300 400 500

200

100

Fig. 4: Reference trajectory generation for obstacle
avoidance.

20 correspondingly. From the legend, P is set to be
the prediction horizon, where red, blue and black line
represents P = 5, 10, 20 respectively. As the prediction
horizon changes from 5 to 20, The control strategy
becomes less and less aggressive. The scenario where
P =5 gives a much higher control effort than other
prediction horizons. Because the less information the

500 150
X Desired Y Desired
400 Actual X Actual Y
100
300
> >
200
50
100
0 o
o 100 200 300 400 0 100 200 300 400
Time Steps Time Steps
(@) (b)
1 15
Theta Desired V Desired
0.8 Actual Theta Actaul V
0.6 . 10
=
2 o4 >
=
0.2 5
o
0.2 o
100 200 300 400 o 100 200 300 400

Time Steps Time Steps
(©) (d)

Fig. 5: Autual and reference trajectory for system state
x in (a), y in (b), 0 in (c), v in (d).

Desired
Actual

-20

[4 50 100 150 200 250 300 350 400 450

Fig. 6: Autual and reference trajectory tracking an ob-
stacle avoidance task

robots can get, it less prediction about the future state
can be made and the controller needs to hold a relatively
larger control effort to diminish the error.

We also test the MPC controller from MPC toolbox
with real-time visualization in the simulation environ-
ment. It requires you to read all information from Auto-
mated Driving Toolbox using Driving Scenario Reader

Fig. 7: Real-time simulation GUI with Automated Driv-
ing Toolbox and SIMULINK.

in SIMULINK and extra calculation for data format
transitions in SIMULINK. An example result of the GUI
to the visualization of real-time running result is shown
in Fig[7] More details can be found in the video here.

/\ /

(@) (b)

o e
Fig. 8: Actual and reference trajectory for system state
x in (a), y in (b), 8 in (c), v in (d).

VI. CONCLUSION AND DISCUSSION

In this work, we study the principle of Model Predic-
tive Control, set up a simulation environment by using
Automated Driving Toolbox and SIMULINK, learn the
structure of MPC Toolbox in MATLAB and build our
own MPC controller from scratch. For experiments,
we test the controller from MPC Toolbox with real-
time visualization in a simulation environment. Also,
we generate multiple trajectories and implement them on
our own MPC controller. The analysis of experimental
results and system parameters such as the prediction
horizon is given.

A lot of work can be expanded from current results.
The tracking error might be decreased with better ar-

— e

Fig. 9: Autual and reference trajectory tracking a circular
road.

chitecture design. We should also improve the com-
putational efficiency. Detailed analysis of the influence
and relationship between the prediction horizon and the
control horizon can be done. After that, automatically
selecting the prediction horizon and the control horizon
for different driving scenarios can be a good topic. As
potential future work, we might be able to improve this
algorithm from the following perspectives:

1) Build our own optimization function for our MPC
controller.

2) Improve the computational efficiency and align
our own MPC controller with Automated Driving
Toolbox to check the 3-D visualization result in
real-time.

3) Achieve automatic parameter learning and select-
ing for different driving scenarios.

REFERENCES

[11 E. F. Camacho and C. Bordons. Model Predictive Control
(Springer-Verlag, 2nded. 2004).

[2] C. Bordons, E. F. Camacho. Model Predictive Control. Ad-
vanced Textbooks in Control and Signal Processing (Springer-
Verlag,London, 1999).

[3] Opyelere, Solomon Sunday. “The application of model predictive
control (MPC) to fast systems such as autonomous ground
vehicles (AGV).” IOSR J. Comput. Eng.(IOSR-JCE) 16.3 (2014):
27-37.

[4] J. Kong, M. Pfeiffer, G. Schildbach and F. Borrelli, ”Kinematic
and dynamic vehicle models for autonomous driving control
design,” 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul,
2015, pp. 1094-1099.

[5] Du, Xinxin, Kyaw Ko Ko Htet, and Kok Kiong Tan. “Devel-
opment of a genetic-algorithm-based nonlinear model predictive
control scheme on velocity and steering of autonomous vehicles.”
IEEE Transactions on Industrial Electronics 63.11 (2016): 6970-
6977.

https://drive.google.com/file/d/1P6kaFvNzOEaOI8mrqVH9PX6ObL841KYj/view?usp=sharing

[6] L. Cunjia, C. Wen-Hua, and J. Andrews. Optimisation based
control framework for autonomous vehicles: Algorithm and ex-
periment. In Mechatronics and Automation, pp. 1030-1035, 2010.

[71 T. Keviczky, P. Falcone, F. Borrelli, J. Asgari, and D. Hrovat.
Predictive control approach to autonomous vehicle steering. In
American Control Conference, 2006.

[8] Falcone, Paolo, et al. ”A model predictive control approach for
combined braking and steering in autonomous vehicles.” 2007
Mediterranean Conference on Control & Automation. IEEE,
2007.

[9] Belvén, Pontus. "Implementation of Model PredictiveControl for
Path Following with the KTH Research Concept Vehicle.” (2015).

[10] https://en.wikipedia.org/wiki/Discretization

	Introduction and Motivation
	Preliminaries
	Problem Statement
	Main Methods
	Linearization and Discretization
	State Estimator
	State Optimization
	System State Evolution

	Experiments and Results
	Conclusion and Discussion
	References

