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Abstract—Mobility in dynamic and crowded environment is
essential and challenging task for robot safe navigation. In this
paper, we develop obstacle avoidance system which could be used
for autonomous as well as semi-autonomous robot navigation in
static and dynamic indoor environments. For this purpose, the
focus of the project is on use of a state-of-the-art velocity-based
planning method called ORCA or Optimal Reciprocal Collision
Avoidance, which not only is efficient, but guarantees collision
avoidance in static as well as dynamic environments with high
degree of scalability.

Index Terms—ORCA, Human-Robot Interaction, Obstacle
avoidance, shared control, assistive autonomy

I. INTRODUCTION

Nowadays, service robots are used in indoor environment
navigation in offices, schools, shopping malls, etc. For the
safe navigation its requires to avoid dynamic obstacles and
be aware of human environment. This demands for better
perception and navigation modules. But, sometimes there
might be problems in perception modules like unable to detect
occluded objects and navigation stack unable to move in
complex routes, for which shared control will provide a better
solution [9]. With the human intelligence and robot decision,
shared control is expected to provide better navigation in
cluttered environment like hospitals, which is the gist our
problem statement.

Shared control has been a prominent area of research
which intersects with many different domains one of which is
robotics. Haptic shared control is a specialized branch which
deals with haptic feedback to the human engaging in shared
control. The importance of haptic shared control in robotics
is very well highlighted in [2] which explains enhanced
performance with reduced control activity of robot with shared
control over fully-automation. The paper laconically explains
the term of Level of Haptic Authority (LoHA) as one of
the defining parameter of a Human-Robot Interaction system,
where higher autonomy have higher LoHA. The assistive-
autonomy system which we propose to design employs an
intermediate LoHA with intermediate shared control where the
human provides velocity commands while the robot moves
along the approximate direction & scale of velocity, but
generates obstacle avoidance maneuvers on its own whenever
necessary.

In shared control it is expected that navigation stack will
provide dynamic obstacle avoidance to ease the shared auton-
omy controlled by human. For which many approach’s have

been proposed Artificial Potential Fields algorithms, Sampling
based algorithms, Probabilistic algorithms, Dynamic Window
Approach, Elastic band method, Genetic Algorithms, etc [3].
Among them none of the algorithms dive into velocity based
approach. The velocity based methods inherently plan their
motion in velocity space rather than the conventional position
space. This approach provides better ease of implementation
over other methods and it is the state of the art method being
used in dynamic obstacle avoidance.

Among the Velocity based obstacle methods, ORCA has
shown its prominence both in dynamic obstacle avoidance and
social aware navigation[4] over predicting human behaviour
with human interaction and providing high success over col-
lision avoidance.

In this paper we provide significance of ORCA over other
VO methods, framework of integrating perception modules
with ORCA working over static and dynamic obstacles, robust
obstacle detection and its tuning parameters, experimental
results of ORCA on detected obstacles highlighting its per-
formance with tuning the hyper-parameters, discussions &
conclusions.

II. RELATED WORK

Motion Planning for robots has been one of the popular re-
search domains. It is an integral component of any autonomous
& semi-autonomous robot navigation and finds its use in self-
driving cars, agricultural robots, tele-operated robots, etc. Mo-
tion planning in itself is a wide branch in robotics and many-
a-times it is linked to Human-Robot Interaction (HRI). One
could consider as a example of a tele-operated nursing robot
controlled by human which is catering needs for quarantined
patients, as an example of HRI with shared control.

Shared control of teloperted robots requires obstacle avoid-
ance when human is unable to navigate safely. An article [15]
showcases real-time obstacle avoidance of wheel chair using
artificial potential fields in shared control, but their autonomy
is more sensor depended and doesn’t overcome by itself the
intrinsic sensor shortcomings which leads for robot being stuck
at few blind spots. On the other hand, Velocity based approach
doesn’t get stuck rather it moves in certain preferred velocity.

The paper [5] coins the term Velocity Obstacles and ve-
locity cones, where in robot is in collision if its velocity
lies inside the velocity obstacles generated by the obstacles
in the environment. To avoid collision, it tries to compute
velocities lying outside the VO. However, this method leads



to oscillatory motion when two agents approach each other.
This is solved by using the Reciprocal Velocity Obstacles [15]
which smartly shifts the robot velocities in the velocity-space
to avoid oscillations or reciprocity dance. This works well with
two agents, but fails when dealing with 3 agents colliding with
each other, as it again endures in oscillations. Similarly, there
are other VO based methods which are recently introduced.
The paper [16] this uses a method called GRCO(Generalized
reciprocal collision avoidance) which is mixture of VO [5],
AVO[19], CCO, LQR-O[21] and Reciprocity[1]. It works for
non-homogeneous robot systems with non-linear equations of
motion and generates smooth collision-free motion for all
robots. But, there are certain limitations where it does not
consider uncertainty and its unclear whether the algorithm
works in narrow passages.

Another paper [17] proposed BRVO. It is a novel ap-
proach used for predicting obstacle trajectories using Bayesian
statistics. The trajectories generated by this method are more
accurate then the trajectories generated by methods with
prior calculated each-agent parameters. Although it has many
advantages, it is learning based method which has high com-
putational complexity and it is also not easier to implement.
Comparatively, ORCA is easier in implementation and pro-
vides robust planning for obstacle avoidance.

The paper [6] written by the same author as RVO, introduces
the concept of ORCA or Optimal Reciprocal Collision Avoid-
ance which addresses and solves all the previous problems
and guarantees collision free robot motion. Also it is highly
scalable and efficient thereby making it the right choice for
the project.

The Section III discusses about the framework and working
principle of ORCA & the obstacle tracking approach. The
subsequent section (4) talks about the simulation environment
used for the project and various experiments conducted upon
it. Section V provides the simulation results and exhaustive
analysis of the results. We end by talking about future scope
and conclusion in section VI. The tabular results are at the
end of the report in the Appendix section VIII

III. METHODOLOGY

The entire project has been accomplished in Robot Oper-
ating System (ROS) with C++ as a programming language.
This section explains about detailed implementation of the
obstacle avoidance system which comprises of ORCA and
Object tracking as the two major components.

A. Framework

The obstacle avoidance system has the following sub-
modules and sub-systems :

1) Sensor (LiDAR) : The system incorporates the use of a
2D LiDAR to sense the environment because of its low
computation costs & rich 360information.

2) Localization and Mapping : This sub-system uses the
LiDAR reading to initially develop environment map
using SLAM g-mapping and later uses the LiDAR scans
to localize itself into the environment. As a result of

Fig. 1: Framework of dynamic obstacle avoidance system

localization, the robot possesses its real-time transfor-
mations with respect to the world frame.

3) Pedestrian Detection & Tracking : This sub-module
detects and tracks moving obstacles and humans in
the environment around the robot using the laser scans
and Kalman filters. It sends the tracked agent’s data
to ORCA via ros-msg with message field information
shown in fig 1.

4) ORCA : This is the core of the obstacle avoidance
system. It takes in the static & dynamic environment
information from surroundings, robot’s position and
velocity & computes the change in velocity if necessary
to avoid collision with any &/or every obstacle in the
surroundings.

5) Robot Controller : Finally the computed velocities are
passed to the low-level robot controller from the ROS-
Navigation Stack which simulates the robot motion in
GAZEBO

B. ORCA

The ORCA is by far one of the most highly valued algorithm
for robot navigation & also finds its use in game development
and actor motion simulation especially in crowded human
simulations. This could be accumulated to the fact that, it
addresses issues of a many of its predecessor algorithms while
it only has a few setbacks, thus overall providing higher
number of advantages over disadvantages, thereby making it
an appreciable choice of algorithm for simulation.

The ORCA algorithm is build upon the concept of velocity
obstacles or VO [5]. It was an intuitive but a novel approach
to collision detection as seen in Fig.(2). If A is the robot & B
represents the obstacle, then VO shrinks robot A to point robot
& it inflates the nearby surrounding obstacles by the radius of
A. It then computes a cone from point A to the circle B &
checks if the relative velocity lies inside of the velocity cone,
in case of which it would be a collision, and otherwise not.

We are using the RVO2 C++ library developed by the
authors of ORCA [14]. The library is not defined for ROS.
Making necessary tweaks and changes, we made it compatible
to operate with ROS.



Fig. 2: Velocity Obstacles [5]

Fig. 3: Velocity Cone and ORCA Lines [6]

ORCA though builds upon the concept, is not intuitive to
understand, but could be summarized the the following 4 steps:

1) Construct velocity cones for all obstacles around the
robot & check if the relative velocity lies inside the
velocity obstacle.

2) If so, using optimization, find the smallest possible
vector which on adding it to the relative velocity, brings
the relative velocity out of the collision cone as seen
by the vector u in fig 3. This is the change in velocity
which is to be shared by both the robot & obstacle using
a distribution factor.

3) On obtaining the minimum collision avoidance velocity
vector u for each collision, convert it into an ORCA
line as shown in 3. ORCA line is an infinitely long line
perpendicular to the change in velocity vector which is
added to the current velocity vector of A. The ORCA

line divides the region into two half-planes. If robot
chooses its new velocity on one-side or half-plane it
is guaranteed to avoid collision from the given obstacle,
however, on choosing velocities on other side, it may or
may not avoid collision.

4) The last step is the consider the ORCA lines for all
agents around the robot & using LPP trying to solve for
minimum vector which gets the current robot velocity
inside of the inclusive zone provided by LPP as shown in
fig 4. This final velocity would be the necessary obstacle
avoidance velocity for the robot within a given time-
horizon (th).

Fig. 4: (a). The robot trying to navigate itself in an agent cluttered
environment (b). Robot trying to compute new velocity using LPP
on ORCA half-planes for each obstacles [6]

C. Obstacle Detection & Tracking
The purpose of obstacle tracking is to determine radius,

position and velocity of obstacles in order for ORCA to
accurately determine preferred velocity to navigate around
moving obstacles. Among different packages we have found,
obstacle detector package[13] is found to be providing neces-
sary requirements. But, we are require to modify it further to
provide accurate results which we will be discussing further.

The obstacle detector has three nodes: scan merger, obstacle
extractor, obstacle tracker nodes. The following figure Fig.(5
illustrates framework of the package.

1) scan merger : It subscribes & merge laser scan data and
converts them into point cloud.

2) obstacle extractor : It subscribes scan merger data and
creates circular obstacles and line segments using split
and merge algorithm.

3) obstacle tracker: It subscribes obstacle extractor data and
supplements with velocity of obstacles using Kalman
filters.

IV. EXPERIMENTS

A. Simulation Environment
The aim of the project to navigate the mobile robot in

hospital environment. Hence, we have chosen our simulation



Fig. 5: Obstacle Detector frame work

environment as hospital aisle & rooms and hospital lobby as
shown in Fig.(6).

(a) Hospital Aisle & Rooms (b) Hospital Lobby

Fig. 6: Simulation Environment

B. ORCA parameter tuning

Running the robot simulation multiple times for differ-
ent start and goal positions in Hospital Lobby environment
brought out some interesting observations. While the robot
performed very well for generalized cases of start & goal
locations, there exists a certain variety of approach which we
refer to as head-on where the robot’s goal is at diametrically
opposite of the start point. In this case, the robot suffered
heavily because it couldn’t compute new paths instantly. This
warranted a need to look-into the ORCA hyper-parameters and
tune them. To maintain uniformity, we set the start point of
robot to (-5m, 0m) & goal point to (6m, 0m) which a large
cylinder in the path.

1) Robot laser scan range : the range of laser scans
2) Time horizon to obstacles : time into the future from

the present time for which the ORCA should check for
collisions

3) Preferred velocity : robot’s current velocity (for au-
tonomous navigation) or tele-operator specified velocity
(for semi-autonomous navigation) which the ORCA

assumes the robot is currently moving with to check
for collisions.

In order to evaluate the performance after tuning the hyper-
parameters, we used the following performance evaluation
metrics:

• Success rate (%) : In trials of 3 for each set of the 3 above-
mentioned hyper-parameters, the % of trials in which the
robot didn’t collide.

• Avg. min. clearance (m) : Average of minimum clearance
from robot to the near-by surrounding obstacles in each
set of 3 trials

• Avg. completion time (sec) : It is the average of total
time taken by the robot to reach from start point to the
goal point in each set of 3 trials.

4 different experiments have been conducted to study the
performance of range of laser scan with variation of thobs.

1) Experiment 1 : In this experiment, robot laser scan range
is set to 3.5 m & vpref scaling factor is set to 1. The
variation of thobs from 100 units to 1200 units have
been observed and recorded in Table I.

2) Experiment 2 : In this experiment, robot laser scan range
is set to 4 m & vpref scaling factor is set to 1. The
variation of thobs from 100 units to 1200 units have
been observed and recorded in Table II.

3) Experiment 3 : In this experiment, robot laser scan range
is set to 5 m & vpref scaling factor is set to 1. The
variation of thobs from 100 units to 1200 units have
been observed and recorded in Table III.

4) Experiment 4:

• 4a : In this experiment, robot laser scan range is
set to 10 m & vpref scaling factor is set to 1. The
variation of thobs from 100 units to 1200 units have
been observed and recorded in Table IV.

• 4b : In this experiment, robot laser scan range is
set to 10 m & vpref scaling factor is set to 2. The
variation of thobs from 100 units to 1200 units have
been observed and recorded in Table V.

C. Obstacle detector parameters tuning

The obstacle detector tuning depends on certain hyper
parameters for which we require to understand the obstacle
extraction. The obstacle extractor framework as follows Fig.7.

1) Obstacle extraction: The concept of obstacle extraction
is explained well in the paper[7]. There are some set of hyper
parameters which play major role in detecting obstacles as
shown in Fig.(8). The working of the obstacle extraction node
is as follows:

1) Grouping: From the /pcl acquired, we consider N min
points to segregate as groups/clusters when the grouping
criteria is not satisfied. d i is distance between points.

di − 1 < dgroup+Ri ∗ dp (1)



Fig. 7: Obstacle extractor frame work

Fig. 8: Obstacle extractor parameters

2) Splitting: Further large groups are divided into smaller
groups with the following criteria. d j is distance be-
tween the leading line and the farthest point in group.

dj > dsplit+Rj ∗ dp (2)

3) Line segmentation: After splitting smaller groups the
package creates line segments for these groups using
ICP or split and merge algorithm.

4) Segments Merge: Later line segments which are close
by are merged to form a common line segment.

5) Extract circles: when a group of line segments form a
triangle it is inscribed in a circle also known as obstacle.
Then the radius of circles are enlarged.

6) Merge obstacles: The obstacles are merged if distance
the distance between them is less than d sep. Followed
by Huge circles are discarded if new circle radius is
greater than r max. The reason for r max is to exter-

minate unnecessary obstacles formed on corridor walls
which are very long when extracted.

2) Parameter tuning: During experiment we found few
explicit parameters that effects the detection:

1) Velocity of obstacle: The maximum velocity for better
tracking and state estimation of obstacle is found to be
9.5m/s. Over this velocity the tracking sometimes is not
a accurate. It can be enhanced further through increasing
process co variance but this will also lead to increase in
noise.

2) Rotation of robot: When the robot is rotated more than
1.5 m/s, there is sometimes formation of temporary
false obstacles due to kalman filter tracking duration is
1sec.

3) Distance from obstacle: The laser range we are using
in the experiment is 15m. But, the pcl generated for
smaller obstacles like human legs are small from larger
distances and pcl increases when we come nearby. After
fine tuning the maximum distance for robust detection
of Humans is 6m.

The following are set of parameter used for robust human
and obstacle detection as shown in Table.(VI) in Appendix.
The difference in tuning parameters is due the less no. of
point clouds generated by human legs.

V. RESULTS AND ANALYSIS

This section talks about the results of obtained from the
aforementioned experiments. The first analysis is of the ORCA
experiments.

A. ORCA simulation results

We tried to experiment with the different ORCA hyper-
parameters such robot scan range, time-horizon to obstacles
& preferred robot velocity

1) Analysis 1 : The results of experiment 1 are presented
in Table I. It can be seen that the robot with scan range
of 3.5m gives best computation time at thobs = 400
units. Being highly narrow-sighted (with smaller thobs)
& observing highly local environment causes the robot
to perform avoidance maneuvers swiftly as it has very
low data to process. It perceives threat from obstacles
when it reaches very close to them & only after it avoids
them, as seen in fig 9a. As the thobs is increased, the
robot’s input data to be processed increases as it would
now consider more obstacles within the 3.5m range and
this slows down the algorithm. Thus, the use of range
3.5m is not recommended for practical purpose.

2) Analysis 2 : The results of experiment 2 as seen in Table
II suggest that with increase in thobs, the computation
time initially decreases, reaches a minimum at thobs =
600 & then further increases with increase in thobs. The
robot starts planning more carefully which increases its
computation time. But still this scan range is not capable
of seeing larger distance. Thus use of range = 4m is also
not application because of narrow-sightedness as well as



(a) Laser scan range = 3.5m (b) Laser scan range = 4m (c) Laser scan range = 5m (d) Laser scan range =10m

Fig. 9: Trajectories followed by the robot while avoiding obstacles with vpref factor of 1 with thobs giving lowest computation time (Table
I-V)

high variance in the minimum clearance between robot
& obstacles, thus not reliable.

3) Analysis 3 : The results of experiment 3 as seen in
Table III show that the robot, for thobs between 400 to
600 has similar performance. Since the range is quite
large, robot has already perceived a good extent of
nearby environment and could be considered as medium-
sighted. However due to this distance information, the
computation of best velocity becomes difficult for the
robot and it cannot decide the best avoidance maneuver
till it reaches too close to the obstacle. This ”confused”
behavior is a good indication that the robot has started
to see more distant objects, but still needs more tuning.
This motivates us to the last stage of experiments

Fig. 10: Variation of thobs with computation time for different values
of vpref

4) Analysis 4 :
• Table IV gives great insights about the performance

of ORCA with laser range of 10m. The robot is not
longer narrow sighted & is capable of seeing far
and wide into the environment. The robot for each
of the thobs, not only has a consistent computation
time, but also consistent and adequate minimum
clearance to the obstacles. Also as seen from the

fig 9d, the robot’s trajectory is smoother & is takes
off to avoid head-on collision quite early in time,
indicating robustness of the algorithm & best set of
parameters.

• Another comparison between Tables IV and V show
that increasing the preferred velocity from 1 to 2
causes the robot to move more smoothly & with
lesser computation time as evident from the fig 10

To summarize the discussion of results, the robot for best
performance, should be operated at laser scan range of 10m,
with preferred velocity scaling factor of 2 and thobs set to
1000 units.

Since the system offers collision avoidance for both tele-
operator commands as well as point-to-point motion, we have
added a new features the package.

• Autonomous Navigation mode : In this mode the robot
works in conjunction with local and global planners,
thereby taking fine-tuned local goals & executing the
goals using ORCA as active dynamic obstacle avoid-
ance. This makes our system suitable for ’complete
autonomous indoor robot navigation’ capable to work
with both static & dynamic environments

• Semi-autonomous mode : In this mode, the robot takes
high-level velocity inputs from the human tele-operator,
and keeps travelling with it until it encounters a possible
collision with a time-horizon. Then it, using ORCA,
performs local collision avoidance thereby being capable
for semi-autonomous shared control as well.

B. Obstacle detection results

Through fine tuning the params we are able to detect
humans and obstacles robustly as shown in Fig.(11). The
obstacle detector params can also be used in humans detection
but, it requires the robot to be in vicinity of 2-4m. There
are certain limitations for this package: dependency of tuning
based on size of obstacles in environment(Large vs small),
mixed pixel effect causing package unable to track smoothly
sometimes. Overall, for our project which requires human and
obstacles detection in hospital environment the package works
robustly.



(a) Robust human detection (b) Robust Obstacle detection

Fig. 11: Fined tuned package results

VI. FUTURE SCOPE AND CONCLUSION

During our project we have faced many challenges like
deciphering the RVO2 (ORCA) the obstacle tracking libraries,
integrating the RVO2 with ROS, fine tuning ORCA hyper
parameters, robust detection of humans and able to solve hese
problems. Overall, we conclude that ORCA works well for
Static Scenarios (as tested) though it has some limitations. The
major limitations include workable range of sensor readings,
accurate positioning of map odom frames in ROS i.e. tf frames
distorts resulting ORCA to provide bad results if odom and
map are not positioned properly. Similarly obstacle detection
requires proper tuning based on environment we are using. For
our project we are able to tune robustly.

In future, continuing this project one can make the laser
scan as a cycloidal shape to emphasize more on obstacles
right in front of it, modify the hyper-parameters to generalize
in all scenarios, add machine learning module to track and
detect humans /or objects, classify obstacles into stationary,
movable or mobile when detected and provide best fine tuned
KF parameters. Finally, we would like to integrate ORCA
and obstacle detector packages to navigate safely in hospital
environment with extension of project for two weeks.
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VIII. APPENDIX

1) The codes of our project are available on Github :
https://github.com/KavitShah1998/DynamicObstacleAvoidance

2) The YouTube link of our project presentaion can ne
found here https://youtu.be/ZYMectHrw4U

3) Result tables :

Th obs Success Min. Computation Status
rate(%) clearance(m) time(sec)

100 33 - - Collision
200 66 - - Collision
400 100 1.04 (low σ) 27.84 Success
600 100 1.03 (low σ) 31.2 Success
800 100 0.91 32.6 Success
1000 100 0.79 33.05 Success
1200 100 0.893(high σ) 35.31 Equidistant

TABLE I: Th obs metric comparison for Laser Scan 3.5m

Th obs Success Min. Computation Status
rate(%) clearance(m) time(sec)

100 50 - - Collision
200 50 - - Collision
400 100 0.92 38.96 Success
600 100 0.433(high σ) 29.31 Success
800 100 0.84 47.02 Success

1000 100 0.85 52.24 Success
1200 100 0.39(high σ) 44.6 (high σ) Success

TABLE II: Th obs metric comparison for Laser Scan 4m

Th obs Success Min. Computation Status
rate(%) clearance(m) time(sec)

100 0 - - Deadlock
200 25% - - Deadlock
400 100 0.87 37.84 Success
600 100 0.92 40.84 Success
800 100 0.85 39.46 Success
1000 100 0.84(high σ) 55.87 Success
1200 100 0.88 54.729 (high σ) Success

TABLE III: Th obs metric comparison for Laser Scan 5m

Th obs Success Min. Computation Status
rate(%) clearance(m) time(sec)

100 0 - - Deadlock
200 33% - - Deadlock
400 66 0.87 37.84 Stuck, Slow
600 66 0.95 34.84 Stuck, Slow
800 100 0.95 34.846 Success

1000 100 0.97 35.20 Success
1200 100 0.92 29.8 Success
2200 100 0.95 30.32 Success

TABLE IV: Th obs metric comparison for Laser Scan 10m & Vpref

scaling factor of 1

Th obs Success Min. Computation Status
rate(%) clearance(m) time(sec)

800 100 1 23.98 Success
1000 100 0.99 24 Success
1200 100 0.97 29.8 Success
2200 100 0.93 24.26 Success

TABLE V: Th obs metric comparison for Laser Scan 10m & Vpref

scaling factor of 2

parameters Obstacle Human
params params

N min 3 2
d p 0.06 0.09

d group 0.1 0.4
d split 0.3 0.4
d spread 0.3 0.6
d sep 0.3 0.8

r merge 0.2 0.7
r max 1.2 1

TABLE VI: Parameters used for robust large obstacle and Human
detection


