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Abstract—Path planning in dynamic environment is a chal-
lenging task as we have to consider time as the other dimension.
Developing computationally efficient motion planners tailored for
problems with unknown and dynamic obstacles is an interesting
area. Combining strengths of local and global planners can solve
this problem. Using A* as a global planner to find the optimal
path from start to goal in a static environment would render a
path within a given time frame. However considering the fact
that this algorithm cannot be used for dynamic obstacles, we
can use sampling based RRT* to sample points around the
obstacle and connect the nodes before and after the obstacle
assuming that the speed of the obstacle is slower as compared to
computation time of RRT*. This paper combines A* and RRT#*
to find a computationally efficient path in an environment with
dynamically moving objects in a shorter time.

Index Terms—Ilocal planner, global planner, A*, RRT*

I. INTRODUCTION

Path planning for mobile robots is an interesting area to
venture into wherein we plan out a trajectory or a path for
a mobile robot to follow from the start position to the goal
position. While planning a path for the mobile robots, we
come across static as well as dynamic environments. We have
multitude of algorithms in motion planning, but most of these
deal with scenarios where the objects in the environment are
static. Path planning in dynamic environment is equally im-
portant scenarios with which we deal practically are dynamic
in nature. This dynamic nature of obstacles further add to the
complexity of path planning. In static environments, once the
optimal path is determined using path planning algorithm, the
robot can start resort to the computed path to traverse from
the starting position to the end position. But in environments
where objects are dynamic, the planner needs to take into
account the dynamic nature of objects and predict their future
trajectories while planning a path [7].

Global planners are generally used for static environments
since they require complete information of the environment
before planning the path. Since the path given by global
planners is rendered after taking environment into consid-
eration, the path is optimal [8]. But these algorithms lack
robustness and flexibility as they cannot handle variations in
the environment as they are based on information provided by
static environments. However local planners on the other hand
render a path without prior knowledge of the environment.
Local planners take into consideration the dynamic nature of
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the obstacles. Hence they are mostly employed for obstacle
avoidance and finding a path in unknown environment. Though
they are flexible and robust but the path rendered by local
planners is not optimal [8].

In this paper, we aim to combine the strengths of the local
planner and global planner and overcome their weaknesses to
find an optimal path in a dynamic environment [8]. In this
paper, we have used A* as a global planner and RRT* as a
local planner. Using the strength of global planners to find
the optimal path in finite time, we will use A* to plan out
a trajectory connecting start and end positions. Whenever we
encounter an obstacle which are dynamic in nature, we will
use local planner RRT* because of its ability to give a quick
initial path to the goal.The RRT* will create samples around
the obstacle and plan out a path around the obstacle such that
the start and end point of the path generated by RRT* lie on
the global path.

II. RELATED WORK

While there has been a significant amount of work done
in developing novel algorithms and architecture for solving
the motion planning problem [7], equal amounts of work is
being done in devising strategies which combine the already
existing algorithms for robust and effective planning in indoor
environments. These strategies have been developed for dif-
ferent robotic systems such as UAVs, indoor robots, industrial
manipulators, etc.

One of the strategies involves the use of Artificial Potential
Fields (APF) to guide the sampling of new points for RRT*
[4]. Given the map of the environment being already known,
this algorithm computes the trajectory online and uses the po-
tential fields to sample new points in the vicinity of obstacles.
While this method greatly reduces sampling time of RRT* near
obstacles by reducing the sample space and thus improving the
convergence rate, it is not capable of performing in dynamic
environments as the potential fields only include static objects.

Another work was based on using lazy implementation in
a discretized work space [3]. It uses a global planner and a
local planner where the former restricts the latter on a small
region of its search space. It first finds a path on a coarse map
and then refines it at higher grid resolutions. However, this
algorithm fails in cluttered or dynamic environments.



In [2], a novel implementation is proposed which uses
a coarse obstacle-free trajectory and then refines it locally
as the UAV traces the path. This novel approach shows
the effectiveness of using two-stage planner for solving the
planning problem. It proved its significance for static, dynamic
and even unknown obstacles.

Another line of work and state of art sampling based re-
planning algorithm RRTX [5] being probabilistically complete,
makes no distinction between local and global planning, yet
reacting quickly enough for real-time high-speed navigation
through unpredictably changing environments. RRTX achieves
a quick reaction time in dynamic environments by maintaining
an e-consistent graph, constant neighborhood size at each
node, and then using rewiring cascades to transfer information
through the graph whenever obstacles change and hence can be
applied to an environment where the obstacles unpredictably
appear, disappear, or move.

A novel approach has been presented in [1] where authors
have used RRT* as a global as well as a local planner for
dynamic planning and quick re-planning under presence of a
dynamic obstacle. The algorithm first computes a path from
start to goal position using RRT* and the robot starts this path.
If while following this path, the robot encounters a dynamic
obstacle, it re-plans its path avoiding the obstacle and re-joins
the global path at some other node closer to the goal. Though
it works appropriately in real-life dynamic scenarios, it has
one limitation where the robot has to a sub-optimal global
path generated by the RRT*.

The remaining of the paper is organized as follows: Section
IIT explains the problem statement, notations and assumptions.
Methodology is described in Section IV. Section V gives
details about the work done so far and Section VI illustrates
the future plan of work.

III. PROBLEM STATEMENT

Let M denote the map in which the robot and the obstacles
are present. Here for a 2D map O denotes the obstacles and
the robot is a turtlebot denoted as T that can move in the
map but must avoid the obstacles, For a 2D map (MeR?).
The path planning problem can be summarized as: Given the
initial placement of the turtlebot in an indoor map compute an
optimal path using a global planner and using a local planner
to avoid dynamic obstacles and quick re-planning.

A. Input

The placement of the turtlebot, the geometric description
of obstacles and the map, location of the desired goal.

B. Output

Computation time of the algorithm, a detailed description
of the path from the start to the goal.

C. Assumptions

The following assumptions have been made:

o A discretized map of the space is already obtained.

o The speed of the obstacles is less than the computation
speed of RRT*.

o Global path is the best possible path, and thus, even after
avoiding the obstacle, the robot again starts following the
global path.

D. Objectives

We aim to achieve certain objectives throughout the course

of the project which are listed below as follows:

o Find a path in a dynamic environment with fusion of
RRT* as local planning algorithm and A* as global
planning algorithm.

o Find an optimal global path connecting start and end
points using A*

o Sample points around the dynamic obstacle when de-
tected and plan a path around the obstacle using RRT*.

o Connect the path generated by A* and RRT*.

o Create a package in ROS.

o Embed the ROS package in Turtle Bot and simulate on
Gazebo.

IV. THE ALGORITHM

Most strategies trying to solve the motion planning problem
in dynamic environments using a global and a local planner
make an assumption that the global path is the most optimal
path and the robot, if it encounters a dynamic obstacle,the
robot must reconnect to the same global path after avoiding
the obstacle on this route. But the issue with these strategies
is that the global path sub-optimal, travelling which could be
expensive at times [1]. Our proposed method will make an
effort to solve this problem by following an optimal path glob-
ally instead of a sub-optimal global path. This method would
particularly be preferable in applications where the robot is
deployed in a medium-sized complex indoor environment and
travel time is a critical factor at play as following an optimal
path globally would always be quicker than following a sub-
optimal one.

The algorithm takes a map of the indoor environment
as input obtained as a result of RGB-D or visual SLAM
approaches. This map being discretized, makes it convenient
to apply a search based algorithm for finding an optimum path.

In this algorithm we give the current position of robot
at start as input. However, in practical applications if this
input is not available, the robot first localizes itself in the
environment to know its current location in the world. Given
a goal-position, it computes an optimum path from its initial
position to the goal-position by applying the A* algorithm on
the discretized map as opposed to using RRT* which would
always give a sub-optimal path irrespective of the computation
time. A* might take more processing time and give a path
slower than the first path given by RRT*, but it would be an
optimal one, thus making this algorithm important for time-
critical applications.
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Fig. 1: Different stages of operation of the algorithm

Once generated a global path, robot starts executing the path
which is void of any obstacles covered in the 2D occupancy
grid. If the robot does not detect any 'new’ obstacles along this
global path, it continues to follow this optimal path to the goal.
If however, the robot detects a new obstacle while traversing
this route using its range sensor as seen in Fig. la, there is
a need to re-plan. An important requirement for re-planning
is that it must be done quickly in real-time, which could
otherwise lead to a collision. On detection of any obstacle
by the range sensor, the robot waits for two successive time
frames to check if the dynamic obstacle is stationary or moving
and if there is any possibility of it colliding with the obstacle
by comparing the velocity vectors of obstacle and robot itself.
If there is a possibility of collision with this obstacle, then it
calls the re-plan module.

From the current location along the global path as an
intermediate start point as seen in Fig. 1b, the re-plan module
deploys the RRT* algorithm to find an alternate ’local’ path
to get past this dynamic obstacle. Considering assumption(3),
an intermediate goal position is set as a location on the global
path a few way-points after the point where the robot detected
the obstacle, and the re-plan module will compute a new route
from intermediate start position to intermediate goal location.
The choice of how many way-points to be skipped from the
intermediate start point will depend upon the grid density of
the input occupancy map. Having no idea about the dimension
and shape of the obstacle, the algorithm assumes the obstacle
to be approximately of 60cm in diameter and RRT* samples
its points in a local region avoiding the 60cm circular region
around where the obstacle was detected. Since this re-route
needs to be done between two near-by points, the algorithm
rapidly generates a path. Also, since avoiding the dynamic
obstacle is the main objective at the spur of the moment,
optimality of new path is no longer an immediate concern
thus justifying the use of RRT* locally.

Once the local path is obtained, the robot takes a de-tour and
starts moving along this new local path avoiding the obstacle.
If however, the obstacle is larger than assumed, the robot while
traversing along the path would again reach a state of possible

collision with the obstacle and would plan a new local route
with its current position as intermediate start point and a new
position beyond our previous local goal location as our new
intermediate goal point. This can be seen happening in Fig. Ic
where the robot again detects the obstacle while following the
local path.

As seen in Fig. 1d, the robot will avoid any dynamically
encountered static or moving obstacles and re-plan its path to
reach a new point on the global path from its current position
on the global path using successive calls to the re-planning
module if needed.

V. METHODOLOGY

The following section explains the detailed implementation
architecture of our proposed method. The fig. 9 represents the
system diagram of the proposed architecture. The architecture
is divided into multiple blocks or nodes and each of the node
is explained in detail.
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Fig. 2: Flow diagram representation of the proposed method.

A. Cost Map

Cost map takes in sensor data from the world, builds a
2D or 3D occupancy grid of the data (depending on whether
a voxel based implementation is used), and inflates costs
in a 2D costmap based on the occupancy grid and a user



specified inflation radius. The costmap_2d package provides
a configurable structure that uses sensor data to store and
update information about obstacles in the world. Each cell
in this structure can be either free, occupied, or unknown.
The costmap performs map update cycles at the rate specified
by the update_frequency parameter. Each cycle, sensor data
comes in, marking and clearing operations are performed in
the underlying occupancy structure of the costmap, and this
structure is projected into the costmap where the appropriate
cost values are assigned. So in our project, we have the basic
feature of costmap to detect obstacle. Here we check the value
of the occupancy grid map provided by the costmap and decide
whether the particular cell belongs to obstacle region or free
space. We basically look out for free regions while checking
for the valid node node points to be considered while planning
the path.

B. Global Planner

As the name suggests, global planner gives the path from
the specified start position and the end position. Here we have
used A* as our global planner which is known to give the
optimal path in finite time. In this node, we calculate the
optimal path between start and end positions using A*. The
operation begins by taking the information about the grids
from the costmap that which of the nodes in our map of the
environment belong to free, obstacle and unknown regions.
Also we get the information about the various other parameters
like the grid resolution, grid height and width. Once we get
this information, we start with the specified starting point
and check whether it belongs to free space or not and start
computing its neighbours. We maintain two lists namely open
and closed list. Open list contains valid nodes. Valid nodes
are the ones which do not lie in the obstacle region and also
which are never checked before. Closed list contains those
nodes which have been analysed. We calculate the total cost
by adding the heuristic and cost. Heuristic is calculated as
the euclidean distance between the current and the goal node
while cost is calculated as the euclidean distance between the
current node and its parent. The node with the least total
cost is considered for further evaluation. Thus this procedure
continues until the all the nodes in open list are checked. For
formulating the path we backtrack the nodes obtained from
goal to start nodes. Like we find the parent of goal node and
then find the parent of parent until we reach the start node.

C. Obstacle Checking node

The node performs the crucial task of constantly checking
if the future path of the robot is obstacle free or contains
an obstacle. The node works on laser scan data and sets a
flag in Ros params conveying other nodes about presence of
a dynamic obstacle lying along the path. For this purpose, the
algorithm checks if the point 1 meter away from current point
along the path is obstacle free and sets the flag accordingly.

D. Laser Imaging node

The laser imaging node works in conjunction with the
local planner node which executes RRT*. Once the obstacle

(a) The local environment (b) Laser image of the envi-
around the robot ronment

Fig. 3: Laser Imaging node in action

checking node conveys the presence of an obstacle along the
path, the laser imaging node is deployed. This node takes
the laser scan of the environment and converts it into a
2D occupancy image. The laser sends a 360° scan of the
immediate environment of the robot via ros_msgs. The node
takes this ros_msgs at every instance and converts it into an
image since the RRT* i.e the local planner node requires
environment information as an image. The fig. 3a shows the
robot detecting an obstacle while the fig. 3b represents the
output of the laser imaging node creating local image of the
environment around the robot. The node gets a 360° scan of
the environment and along each of the scan line if the range
value along the scan lies within the dimensions of the image,
black lines are constructed from the point of detection of
the obstacle to end of image along the scan direction. The
image file created at every scan iteration and edited using
OpenCV. The white specs found in the laser scan in fig. 3b is
update using image processing with OpenCV libraries to make
the algorithm more robust and less prone to bugs. The final
updated image is then sent to other node using a ros_bridge.

E. Local Planner

The local planner node is the RRT* implementation over the
laser scan image to find a quick route from current location
of the robot to the 4th next point on the global path. The grid
size of global map on which A* computes its path is 0.5m
x 0.5m while the laser imaging node creates an image of 4m
x 4m environment around the robot with robot at its center.
This means that, along any direction the minimum distance
from position of robot to end of image is 2 m, which would
mean the presence of minimum of 4 way-points from current
robot location to end of image in any direction. The local
planning node reads the processed local environment image
created by the laser imaging node and then uses it to sample
points around the robot to reach to the desired intermediate
goal point from the current position. An example of the input
laser scan image can be seen in fig. 4. The image on the right is
the one on which RRT* works upon. There are a few unwanted
white specs in the image, but using gaussian blur and image
processing blocks those unwanted white regions from the area
of interest. As a result, even though the RRT* might sample
some points in the white region beyond region of interest, these
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Fig. 4: Laser scan images.

points would get rejected due to lack of possible connections
with the existing tree. This helps to further eliminate unwanted
bugs.

E. Controller Node

The global and local planner nodes give the desired path
to be followed, but along with it, a controller is required to
complete the navigation stack. For locomotion of robot, a PID
controller was implemented to achieve point-to-point drive for
the robot.

G. Main Node

This node performs the crucial task of integrating all the
above mentioned nodes of the robot. As seen in the fig. 9,
the main node links all other nodes together. It first cre-
ates an instance of global planner and gets a global path
from the global_planning node. This path is fed into the
controller which moves the robot along the path until the
obstacle_checker node detects an obstacle and changes the flag
status. Once detecting the obstacle, the controller returns back
the non-executed path to the runner node. The runner node
then initiates the local planner node with the local environment
laser image and gets back a path from the local node. The main
node sends this local-path to the controller and the controller
moves the robot along this new path. If the new path is free
of obstacle, the robot will reach the desired goal position and
continue on the previous global path from the newly reached
node, otherwise, the robot, on the path, will again call the
RRT* module and repeat this process till it safely reaches a
point on the global path.

Just like any other other project, this project too did leave
us in many challenges. But as they say, each challenge brings
new opportunities to learn along with it. Initially being totally
new to ROS, it was quite a task to get the initial scratch
into the problem. With gradual efforts and perseverance we
somehow managed to get past the initial mole-hill. Next we
encountered a problem about how to use the laser scan as
an input to the local planner. The solution idea was obtained
while searching through papers and online forums. The final
challenge which we faced was integrating the two algorithms
for effective navigation indoor spaces. While we haven’t been
able to solve this issue yet, we hope to eventually solve it.

VI. RESULTS

Dynamic obstacle avoidance is an interesting and important
research domain in motion planning as most of the real
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Fig. 5: Robot Environment in gazebo.

Fig. 6: A*path execution from rviz window.

life scenarios encountered are dynamic in nature. For the
simplified problem statement to this dynamic motion planning,
we offer the results of our approach.

The individual algorithms of A* and RRT* have been
tested for providing the optimal path in different types of
environments. Each of the two algorithm along with the
different nodes have proved to provide satisfactory results.

The fig 5 is a screenshot from one of the environments
which the algorithm was tested in. The A* algorithm was
executed on the robot between Point 1 and Point 4 while
the RRT* was executed between Point 2 and Point3. In the
absence of the cylindrical obstacle, the robot successfully
traverses between Points 1 and 4. This can be seen in fig. 6
which shows the rviz plot of the path executed by the robot in



Fig. 7: RRT* path execution from rviz window.

gazebo. On encountering a dynamic obstacle, the robot would
switch onto the RRT* and go past the obstacle avoiding it.
This could be seen in fig. 7 in which shows the actual path
followed by the robot in gazebo.

Although the algorithms execute smoothly when ran indi-
vidually, we are facing certain issue while integrating the two
due to which we haven’t been able to provide an exhaustive
evaluation of our algorithm.

VII. CONCLUSION AND FUTURE WORK

The area of dynamic obstacle detection and avoidance is
one of the niche fields in robotics which is considered as
an unsolved problem. Though a solution already exists for
the above described problem, there can always be multiple
approaches to existing issues which open up new research
areas in the field of robotics.

The open-ended problem of dynamic obstacle avoidance
can be in future extended to dynamically moving obstacles.
Also, with developments in sensor technology provide an
opportunity for sensor fusion which is another emerging area
in robotics. By sensor fusion, cheap and reliable sensors could
be used to eliminate the potential drawbacks of individual
sensors. The prospective future application of this kind of
dynamic obstacle avoidance systems could be for autonomous
robots to work in hospital like settings in collaboration with
nursing robots like Baxter to take care of humans in quarantine
rooms.

VIII. TIMELINE AND DIVISION OF TASKS

We have proposed the following timeline which we have
designed to complete our project as well as to achieve the
desired objectives.
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Fig. 8: Devised timeline for our project.

IX. DIFFERENT ASPECTS OF PROJECT

Table listed below describes the different of aspects of
project to be covered as mentioned in the class.

Project Components  Aspects Details

Covered
Intellectual Merits There are papers which present combination of various
v algorithms proposed. But idea of combination of RRT* and A*
was novel
Application Impacts The scope of project application extends to dynamic as well as
v static environment indoor as well outdoor environments. A

simple example could be a robot vacuum cleaner or an
autonomous shopping cart.

Related Work Review We went through good amount of literature review to cover

v most of the aspects of combination of algorithms.
Autonomy Design The algorithm inhibits the capability to detect dynamic
N obstacles and replans a path just enough to avoid the obstacle
and follow the optimal path
Evaluation X We have done extra group literature review as a substitute
Platform v Simulation(Gazebo) .

Fig. 9: Project Aspects
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XI. APPENDIX

The entire code of out project can be viewed from our
github repository which can be accessed via the following link:
https://github.com/KavitShah1998/Combined_Astar_with_RRTstar_in_ROS



