
RoboNav: Robot Navigation in Dynamic
Environments using Deep Reinforcement Learning

Abhishek Jain
ajain4@wpi.edu

Kavit Nilesh Shah
kshah@wpi.edu

Kenechukwu C. Mbanisi
kcmbanisi@wpi.edu

Sanjeev Kannan
skannan@wpi.edu

Abstract—Navigation is a fundamental behavior required by
mobile robots to operate in human environments. Classical nav-
igation methods exist which comprise a pipeline of environment
perception, localization, path planning and control. In recent
years, deep reinforcement learning approaches to navigation have
proved to be promising in addressing the limitations of the
classical methods (e.g. reliance on highly accurate maps and
localization). In this project, we explored an end-to-end learning
approach to train a navigation agent from raw perception
information (i.e. laser scans) to velocity commands. Specifically,
we consider two off-policy learning algorithms, Deep Q Network
and Deep Deterministic Policy Gradient and train agents in
different simulated training environments to perform point-to-
point (P2P) navigation without colliding with obstacles. We
evaluate our models against a baseline, Move-Base, which is a
well-known classical navigation implementation in ROS. This
report discusses our implementation, simulation results, findings
and lessons learned.

Index Terms—Robot Navigation, Deep Reinforcement Learn-
ing

I. INTRODUCTION

Autonomous navigation of mobile robots has remained an
active research topic in the robotics community for decades.
This is driven by the appeal to have mobile robots operate
around humans in a safe and effective way with little or no hu-
man supervision. For a mobile robot to navigate autonomously,
it must be able to perceive its environment, generate collision-
free and dynamically feasible trajectories from its position to
the goal, and then generate control commands to its actuators
to track the trajectory. This sequence of capabilities describes
the classical navigation pipeline for mobile robots.

Advances in perception, planning and control have lead to
the application of mobile robot navigation in various fields
such as space and underwater exploration, transportation (with
self-driving vehicles, and more recently, delivery robots),
military operations such as surveillance, etc.

Although the existing classical navigation methods have
provided remarkable results, they suffer from significant lim-
itations and drawbacks. For instance, these methods rely
heavily on the availability of high-quality geometric maps to
enable effective path planning. These maps are usually not
readily available because of (1) in-feasibility of generating
them, (2) high cost of sensing equipment required. Also, most
classical navigation methods may require significant tuning
and engineering for every new robot and environment they are
to be deployed to. This limits the scalability of these systems
in real-world scenarios.

Fig. 1: Our end-to-end navigation agent maps raw laser scan data
directly to velocity commands to perform point-to-point (P2P) navi-
gation while avoiding obstacles in the environment.

With the burgeoning of artificial intelligence and machine
learning, interest in learning-based approaches to the robot
navigation problem has continue to grow. In the literature,
the navigation problem can either be formulated as an end-
to-end learning problem [1] [17] (where the RL agent learns
the complete pipeline from perception to control) or on a
component-level (i.e. either learning global planning or obsta-
cle avoidance and relying on classical methods for the others).
One of the advantages of the end-to-end learning approach is
that the navigation pipeline is learned in a single model, there-
fore, eliminating the chance of cascading performance errors
across components (which often occurs in classical methods).
However, one major drawback is with classic problem of deep
learning - lack of explainability.

In our project, we consider the end-to-end learning approach
to train a navigation agent from raw perception information
(i.e. laser scans) to velocity commands. Our work focuses
on learning a policy for short-range point-to-point (P2P)
navigation, thereby addressing the local planner problem. In
real robotics systems, a high-level route planner would be
required to provide waypoints for the local planner to follow.
We consider two scenarios in formulating our problem, (1) a
discrete action space, (2) a continuous action space. For the
former, we implement a Double Deep Q Network (DQN) and
for the latter, Deep Deterministic Policy Gradient (DDPG).

We train and evaluate our policies in 4 different environ-

ments with varying geometric complexities and compare our
performance with a standard, well-known classical navigation
method implemented in ROS (Robot Operating System).

In the next section, we present related work and ground
our approach in existing methods. Then in section III, we
present our problem and methodology. Section IV covers
the experiments performed and simulation results. Section V
presents a comprehensive discussion on our findings and we
conclude this report with a conclusion in section VI.

II. RELATED WORK

Motion planning for mobile robots has been a popular
research topic. Motion Planning is a critical component in
robotic systems like self-driving vehicles and household helper
robots. Classical methods to solve motion planning problems
- range from traditional graph search methods to more recent
techniques such as Structure from Motion (SfM) [14], Simul-
taneous Localization And Mapping (SLAM) [15], and Visual
Odometry (VO) [16] are used.

Using Reinforcement Learning for mobile robot navigation
has been a relatively new research topic. A recent paper by
Liu et.al. [1] discusses a mobile robot operating in public
environments that can avoid pedestrians in a safe and suc-
cessful manner. Their approach combines deep reinforcement
learning with imitation learning, and is capable of operation
with limited field of view. [4] addresses a couple of major
issues of Reinforcement Learning - large training data and
lack of generalization to new goals. The paper uses a policy
based on both goal and current state to tackle the latter, and
a high quality 3D Map with a physics engine to address the
former issue. Both the papers above use an approach based
on existence of a map. However, there are several approaches
that work well without one. A good example is the work by
L. Tai et. al. [5] , where sensor range data and current position
are used as inputs to the model and then output the required
steering actions to navigate a mobile robot. A huge advantage
of such a map-less approach is the ability to work in unseen
virtual and real environments.

Common reinforcement algorithms used for mobile robot
navigation include DDPG (Deep Deterministic Policy Gra-
dient) and DQN (Deep Q-Networks). [11] discusses and
compares the two approaches for mobile robot path planning.
The paper also discusses an implementation of DDPG - its
advantages in a continuous control setting and its disadvan-
tages when it comes to training efficiency and convergence
rates. [12] is another good paper that talks about introducing
an influence value to shorten convergence time by 91% in
DDPG and 78% in DDQN(Duelling DQN) for a mobile robot
navigation problem.

For our project, we considered both map-based and map-
less aproaches. Eventually, we went ahead with a map-less
approach to teach our agent - a differential drive mobile robot
to navigate an indoor closed room with moving obstacles
using both DQN and DDPG. We also intend to compare the
performance of both approaches in different environments.

III. METHODOLOGY

A. Problem Formulation

We can consider the mapless motion planning problem
as a decision making process. At time-step t ∈ [0, T], the
robot chooses an action at according to the state st, it then
executes the action, reaching a new state st+1 and receiving
a reward r. Our goal is to reach assigned goal locations in
indoor environments with obstacles by maximizing the total
discounted reward from time-step t0 onward.

Any physical environment has two basic components: static
and dynamic components. While static components are rela-
tively easy to model as they have fixed properties, the dynamic
components pose a great challenge. We aim to counter these
challenges by using different approaches for these compo-
nents. Whilst the static components can be modelled using
occupancy grids, the dynamic components will be modelled
using the sensor data to detect the real-time parameters for
these components. This data is fed to the reinforcement agent
along with the robot parameters as input whereas the output
will be fed to the robot controller as input. The controller will
output the modified robot state back to the environment.

The type of agent being used will be driven by the kind of
action space being used. In case of continuous space, policy
based techniques will be used while in the discrete case,
value based techniques will be used. A key component of this
method is the kind of reward function being used. We aim to
experiment with both sparse and shaped reward functions.

Fig. 2: Basic Architecture

B. Observation Space

The observation is local knowledge of the world acquired
by the robot. The observation space comprises of almost all
of the following:

1) Laser-scan data: An nx1 dimensional vector which con-
tains laser range for the ’n’ laser scans around the robot.

2) Position error: It is the distance between current position
of the robot and the goal location inside the world.

(a) Empty world (b) With 4 static obstacles (c) With 4 moving obstacles (d) Maze

Fig. 3: Four training environments with incremental levels of complexity

3) Orientation error: It is the angle difference between
current robot heading and direction of robot goal.

4) Minimum distance to obstacle : It is the minimum
distance to any obstacle around the robot measured at
every time-step using the laser-scans

5) Angle to obstacle : It is the angle of the closest obstacle
measured with respect to the robot heading direction.

This approach is known as the map-less approach where
the agent only has access to the laser range values from the
robot environment as opposed to the other approach where one
provides an entire map of the local environment as an image
to the agent.

C. Action Space

The possible set of action inputs needed to drive the
turtlebot are vx (linear velocity along the robot heading) and
wz (angular velocity about vertical axis of the robot). We
employ a discrete action space for DQN whereas a continuous
action space for DDPG.

1) Discrete-action space :
The robot has a constant linear velocity while a discrete
angular velocity space

vx = 0.15 m/s (1)
wz = { 1.5 0.75 0 -0.75 -1.5 } rad/s

2) Continuous-action space : The robot has a constant
linear velocity while the angular velocities of the robot
are continuous.

vx = 0.15 m/s (2)
wz ∈ [-2 , 2] rad/s

D. Reward Function

Accurate training necessitates error-free reward function.
The robot should receive a high positive reward for reaching
the goal, and be penalized for its every collision with the
world. Both - collision and reaching the goal, will terminate
an episode. Also, the robot should be penalized at every step
for the error in its orientation from the goal as well as its
distance from the goal. This would not only ensure it always
heads towards the goal and minimizes the distance, but would

also imply it trying the follow ”shortest-path” to the goal,
essentially acting as a heuristic. The reward function in fig4
was used in the ROBOTIS’ open-source implementation of
DQN on turtlebot3 [9].

(a) Linear reward function (b) Angular reward function

Fig. 4: Reward function for discrete-action space

θ =

{
π
2 + action ∗ π8 + φ discrete action-space
π
2 + (1− wz) ∗ π4 + φ continuous-action space

Rθ = 5 ∗ (1− Λ(θ))

Rd = 2
Dc

Dg

Rnet = Rθ ∗Rd

where,

action : Action index
φ : Yaw of turtlebot3
θ : Angle from goal
Λ(θ) : Oscillating reward function
Rθ : Angular reward
Dc : Current distance from goal
Dg : Absolute distance from goal
Rd : Distance reward
Rnet : Net reward
wz : Angular speed in continuous space

The only change in both the reward functions is the discrete-
action space is linearly mapped into a continuous action space,
in the latter.

The reward function to penalize the robot at each step is
the product of linear reward and angular reward which can be
seen in Fig. 4. The oscillating reward function is a W-shaped
discontinuous linear function which safeguards that the robot
gets positive rewards when facing the goal and is penalized
when facing away from the goal.

E. Deep Q Network (DQN)

DQN is an off-policy, model-free reinforcement learning
algorithm which applies a deep neural network (as a non-linear
function approximator) to estimate the “value”, Qπ , over state-
action pairs, (st, at), of taking a particular action at given a
given state st, under a given policy π [6], [7].

This algorithm was introduced as an extension to the classi-
cal Q-learning approach. By leveraging deep neural networks,
DQN is able to deal with high dimensional state/observation
spaces (such as with image data).

For a given policy π, the action-value function Qπ is defined
as follows:

Qπ(st, at; θ) = Eπ

[∞∑
t=0

γtR(st, at)|S = st, A = at

]
(2)

where Qπ(st, at) is the expectation of the total return (i.e.
discounted accumulated reward) of taking action at at state st
following policy π to the end.

DQN leverages the Bellman equation to iteratively learn and
update the optimal action-value function based on:

Q?(st, at; θ) = Eπ
[
R(st, at) + γmax

at+1

Q(st+1, at+1)|st, at
]

(2)
To address limitations of the baseline DQN algorithm, tech-

niques such as experience replay (to address interdependence
and correlation in subsequent transition samples) and fixed
target network (to improve stability of learning) have been
proposed in the literature [6].

In this project, the DQN with experience replay and fixed
target network are applied in training the value-based agent
for the navigation task. The simple network structure, shown
in Fig. 5, includes an input layer with 26 units (or 26 units
for Stages 2-4), two fully connected layers with 512 units and
an output layer with 5 units (for the 5 discrete actions defined
above).

F. Deep Deterministic Policy Gradient (DDPG)

DDPG is an off-policy, model-free reinforcement learning
algorithm for learning actions in continuous space. It combines
ideas from DPG (Deterministic Policy Gradient) and DQN
(Deep Q-Network). It involves 2 neural networks: ’Actor
and Critic’ working together. The Actor network is a policy
network which estimates the best action in a given state while

O

Laser_Scan(24)
Distance_to_goal (1)

Heading (1)
FC

5
OUTPUT

26 512
FC

Fig. 5: DQN network architecture with input layer of 26 units (28
units for Stages 2-4) and output layer of 5 units (for Q values of all
discrete actions)

the Critic network is a value based network which estimates
the Q value of a given state-action pair [8].

DDPG leverages the advantages of both the networks to give
a policy which is stable and works in continuous action space.
It works in the same way as DQN works by using experience
replay and fixed target actor and critic networks. The Critic
network is exactly the same as the DQN network which
estimates the Q values according to the modified Bellman
Equation:

Q?(st, at; θ) = Eπ [R(st, at) + γQ(st+1, A(st+1))|st, A?(st)]
(2)

where Qπ(st, at) is the expectation of the total return (i.e.
discounted accumulated reward) of taking action at at state st
following policy π to the end, at is the action predicted by
the Actor network given by the Equation:

A?(st) = at (2)

The actor network work towards selecting the action that
maximizes the value of a state using the same Bellman Equa-
tion. In contrast to DQN, the training in DDPG is relatively
more stable due to slower ’soft’ updates of the target networks.
Instead of total updates of the target network, the networks
are updated continuously in small proportions which provides
stability to the training using the Equation:

Target(w) = (1− τ)Current+ (τ)Target (2)

where τ is another hyperparameter to be tuned.

In this project, a simple standard DDPG architecture is used.
The actor is a neural network with an input layer with 26
units, a batch normalisation layer, three fully connected layers
with 512 units, 256 units and an output layer with 2 units
(for the 2 continuous actions defined above). The critic is a
neural network with an input layer with 28 units, two batch
normalisation layers, three fully connected layers with 512
units, 256 units and an output layer with 2 units.

IV. EXPERIMENTS

A. Training Stages and Parameters

Training of the navigation agent was performed on a simu-
lated differential drive robot (Turtlebot3 Burger) in a series
of four simulated environments with incremental levels of
complexity (see Fig. 3) [10].

Laser_Scan(24)
Distance_to_goal (1)

Heading (1)

Norm

FC

26

FC

FC

OUTPUT

26

512

256

2

Actor

Laser_Scan(24)
Distance_to_goal (1)

Heading (1)
Action(2)

Norm

FC

26

FC

FC

OUTPUT

26

512

256

1

Actions (2)

Critic

Fig. 6: DDPG Architecture

1) Stage 1 (Empty Box): 2m x 2m square world with robot
spawned at the center.

2) Stage 2 (With static obstacles): Augments Stage 1 with
4 static white cylinders.

3) Stage 3 (With dynamic obstacles): Animates static ob-
stacles in Stage 2 in a constrained circular motion.

4) Stage 4 (Maze with dynamic obstacles): Maze-like
world with dynamic obstacles random motion.

The training and evaluation simulations are implemented
in Gazebo simulator via ROS (Robot Operating System) [9].
ROS provides the framework for enabling communication
between the simulator (Gazebo) and our training algorithm
implemented in Python using PyTorch.

For environment perception, a 360-degree LiDAR mounted
on the robot provided laser scans in every simulation step. The
resolution of the laser scan was reduced from 360 points to
24 points to reduce the neural network input dimensionality.
We trained the various models using an Adam optimizer
on GPU-enabled clusters provided by GCP (Google Cloud
Platform). Table I shows the parameters applied in the agent
training process. Individual agents were trained for each of
the environments. Through experimentation, we observed that
stages with more complexity (Stages 3-4) required a slower
exploration rate (i.e. rate at which ε decays) to enable the
agent encounter more state-action pairs in the environment.
Therefore, for Stages 1-2, we applied decay to 0.1 in 100,000
steps for DQN and then for Stages 3-4, we applied decay to
0.1 in 300,000 steps.

B. Evaluation Metrics

After the models are trained, we test the models using
a comprehensive framework. Each trained model is run on

Parameter DQN DDPG
Minibatch size 64 64

Replay buffer size 1.0e6 1.0e6
Replay start size 5.0e3 5.0e2

Learning rate 2.5e-4 2.5e-4
Model update freq. 5.0e3 1

Tau - 1.0e-3
Initial exploration 1.0 1.0

Intermediate exploration - 0.1 (in 1.0e5)
Final exploration 0.1 (in 1.0e5)* 0.01 (in 0.9e6)
Discount factor 0.99 0.99

TABLE I: Training Parameters for DQN and DDPG

a set of 10 trials, where each trail consists 5 randomly
generated goal locations. For each trial, parameters including
x,y coordinates, distance to obstacles and velocities are logged.
After the trial, the logged data is used to compute :

1) Success Rate: A boolean that stores true if all goal
locations have been reached, else false.

2) Path Length: This alludes to the total length of the
distance travelled by the robot to cover all goal locations.

3) Clearance: This is the minimum distance of the robot to
any obstacle in its vicinity.

Additionally, we also compute Mean path length, Mean
clearance across several trials to compare performance of
DQN, DDPG with a baseline method (Move-base).

Fig. 7: Example plot of an evaluation trial in Stage 1 with three
methods (DQN, DDPG and Move-base) reaching 5 goal positions.

C. Baseline: Move-Base

The move base package, an integral component of the ROS
Navigation Stack is a library for autonomous robot navigation
in indoor environments. To compute a path, the package makes
the use of one of the many motion planning algorithms such as
A*, D*, Dijkstra, Elastic Band,etc. For this it requires a map
of the indoor environment which is obtained by performing

Fig. 8: Example plot of an evaluation trial in Stage 2 with three
methods (DQN, DDPG and Move-base) reaching 5 goal positions

Fig. 9: Example plot of an evaluation trial in Stage 4 showing
a compariosn of our two trained RL methods (DQN and DDPG)
reaching 4 goal positions

Simultaneous Localization And Mapping (SLAM) on the
world that generates the world’s map like seen in the Fig.10a.

Utilizing this global map of the world, the move base
computes a global path with its global planner, and while the
robot executes this path, its local planner iteratively fine-tunes
the local path for path optimization, obstacle avoidance and
path clearance as seen in Fig.10b. This is called hierarchical
motion planning and this is makes move base robust and an
ideal choice to benchmark our model.

(a) SLAM Map for Stage2 (b) RVIZ window

Fig. 10: Move base in action

Metric DQN DDPG Move Base
Success rate (%) 100 100 100

Mean Path Length (meters) 9.25 9.44 8.47
Mean Clearance (meters) 1.09 1.01 1.12

TABLE II: Performance metric comparison for Stage 1

Metric DQN DDPG Move Base
Success rate (%) 70 100 100

Mean Path Length (meters) 12.14 10.35 9.60
Mean Clearance (meters) 0.47 0.39 0.45

TABLE III: Performance metric comparison for Stage 2

Metric DQN DDPG Move Base
Success rate (%) 40 90 20

Mean Path Length (meters) 14.70 14.69 7.96
Mean Clearance (meters) 0.43 0.42 0.46

TABLE IV: Performance metric comparison for Stage 3

Metric DQN DDPG Move Base
Success rate (%) 20 60 60

Mean Path Length (meters) 11.59 11.97 7.73
Mean Clearance (meters) 0.52 0.44 0.47

TABLE V: Performance metric comparison for Stage 4

D. Simulation Results

The results from the experiments performed in the 4 stages
give some very useful insights:

Table II shows that:
1) All the three agents successfully completed all the trial

for the stage 1.
2) The Move-Base agent gave the shortest path followed

by the DQN agent and then DDPG agent.
3) The DQN and Move-base agents had a much better

obstacle clearance as compared to the DDPG agent.

Table III shows that:
1) DDPG and Move-Base agents successfully completed

all the trials for the stage 2 while the DQN agent was
able to complete 70% of the trials.

2) The Move-Base agent gave the shortest path followed
by the DDPG agent and then DQN agent.

3) The DQN and Move-base agents had a much better
obstacle clearance as compared to the DDPG agent.

Table IV shows that:

1) The DDPG agent gave the best performance in Stage 3
while the DQN agent performed poorly and the Move-
Base agent failed miserably.

2) The Move-Base agent gave the shortest path while the
DDPG and DQN agents gave comparable paths.

3) The DQN and Move-base agents had a much better
obstacle clearance as compared to the DDPG agent.

Table V shows that:

1) The DDPG and Move-base agents gave comparable
performance while the DQN agent performed poorly.

2) The Move-Base agent gave the shortest path while the
DDPG and DQN agents gave comparable paths.

3) The DQN agent had a much better obstacle clearance as
compared to the other agents.

V. DISCUSSION AND FUTURE WORK

We performed robot navigation using 3 different techniques:
DQN, DDPG and Move-Base. DQN and DDPG are based on
deep reinforcement learning where the agent learns to navigate
in the environment whereas Move-Base is based on motion
planning where the agent calculates the path based on the given
instantaneous data. As seen in Figures 7, 8 and 9, the DQN
agent follows a jittery path whereas the DDPG and Move-base
agents follow a much smoother path. This owes to the discrete
action space that the DQN agent operates in while the DDPG
and Move-Base agents have been operating in a continuous
action space.

As we moved from Stage 1 to Stage 4 environments,
the complexity of the environments gradually increased with
respect to the number of obstacles and nature of their motion.
Stage 1 being just an open space without any obstacles had all
the agents successfully completing all the trials where as Stage
2 had some static obstacles in the space, which led to some
agents failing some trials. Stage 3 had dynamically moving
obstacles but in a fixed motion. Therefore, the results in stage
3 gave us some great insights: Since, the DQN agent had a
limited action space, the agent did perform well in some trials
but failed in other trails. The DDPG agent performed very
well in most of the trials owing to its large available action
space whereas the Move-Base agent failed miserably due to
the fact that it just performed according to the available data
and did not had the capability of estimating the behaviour of
the moving obstacles. Stage 4 again showed similar results to
that of Stage 3 where the DQN agent nearly performed the
same whereas the perfomance of the DDPG agent dropped
a bit but the Move-base agent performed significantly better
probably due to Stage 4 environment having random obstacle
motion.

There were some interesting findings in the project. The
Move-base agent gave the best trajectory out of all the 3 agents
but gave a poor performance in case of dynamic environments.
The DDPG agent gave the best performance in all the 4 stages
and a significantly smoother path whereas the DQN agent was
superior in terms of learning quickly from the environment but
gave average results in terms of successful navigation and path
smoothness owing to its limited action-space. This leaves us
with multiple avenues for experimentation and research where
we could improve the performance of the Deep Reinforcement
Learning agents. One possibility could be to use a stack of
sensor data and not just instantaneous data so as to learn
the dynamic aspects of the environment. We could also try
to increase the number of layers used in our neural networks
so as to see if the agents are able to extract more information
from the available data. We could also increase the number of
LiDAR scan samples from 24 to some other larger value so
as to get more precise information from the environment.

VI. CONCLUSION

The aim of the project was to use Deep Reinforcement
Techniques (DRL) for navigating a mobile robot in different
indoor environments - with both static and dynamic obstacles.
There were 2 different DRL agents: DQN and DDPG that were
used in this project. Their performance - in terms of mean
path length, clearance, and path smoothness is compared to a
traditional motion planner (based on Move-Base framework).
From our results, we were able to gather a lot of insights
into pros and cons of both methods. The DQN agent was
quick to learn but gave average performance. The DDPG
agent gave better performance but had huge computation
requirements. The Move-base agent gave superior performance
but performed poorly in the case of dynamic environments.
Through this project, we were able to understand and suc-
cessfully apply Reinforcement Learning techniques to mobile
robot navigation.

REFERENCES

[1] Liu, L., Dugas, D., et. al. Robot Navigation in Crowded Environments
Using Deep Reinforcement Learning. Presented at IROS 2020.

[2] Chen, G., Pan, L., et. al (2020). Robot Navigation with Map-Based Deep
Reinforcement Learning. http://arxiv.org/abs/2002.04349

[3] L. Tai, G. Paolo and M. Liu, ”Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation,” 2017 (IROS),
Vancouver, BC, 2017, pp. 31-36.

[4] Y. Zhu et al., ”Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” 2017 IEEE International Conference on
Robotics and Automation (ICRA), Singapore, 2017, pp. 3357-3364, doi:
10.1109/ICRA.2017.7989381.

[5] L. Tai, G. Paolo and M. Liu, ”Virtual-to-real deep reinforce-
ment learning: Continuous control of mobile robots for mapless
navigation,” 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Vancouver, BC, 2017, pp. 31-36, doi:
10.1109/IROS.2017.8202134.

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare,
M.G., Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Pe-
tersen, S., 2015. Human-level control through deep reinforcement learning.
nature, 518(7540), pp.529-533.

[7] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-
stra, D. and Riedmiller, M., 2013. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

[8] Lillicrap, Timothy & Hunt, Jonathan & Pritzel, Alexander & Heess,
Nicolas & Erez, Tom & Tassa, Yuval & Silver, David & Wierstra, Daan.
(2015). Continuous control with deep reinforcement learning. CoRR.

[9] https://www.ros.org/about-ros/

[10] https://emanual.robotis.com/docs/en/platform/turtlebot3/machine learning/

[11] Dong, Yuansheng, and Xingjie Zou. ”Mobile Robot Path Planning Based
on Improved DDPG Reinforcement Learning Algorithm.” 2020 IEEE 11th
International Conference on Software Engineering and Service Science
(ICSESS). IEEE, 2020.

[12] Yu, Jinglun, Yuancheng Su, and Yifan Liao. ”The Path Planning of Mo-
bile Robot by Neural Networks and Hierarchical Reinforcement Learning.”
Frontiers in Neurorobotics 14 (2020).

[13] Marchesini, Enrico, and Alessandro Farinelli. ”Discrete Deep Rein-
forcement Learning for Mapless Navigation.” 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2020.

[14] Ullman, Shimon. ”The interpretation of structure from motion.” Pro-
ceedings of the Royal Society of London. Series B. Biological Sciences
203.1153 (1979): 405-426.

[15] Durrant-Whyte, Hugh, and Tim Bailey. ”Simultaneous localization and
mapping: part I.” IEEE robotics & automation magazine 13.2 (2006): 99-
110.

[16] Nistér, David, Oleg Naroditsky, and James Bergen. ”Visual odometry.”
Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2004. CVPR 2004.. Vol. 1. Ieee, 2004.

[17] Bansal, S., Tolani, V., Gupta, S., Malik, J. and Tomlin, C., 2020, May.
Combining optimal control and learning for visual navigation in novel
environments. In Conference on Robot Learning (pp. 420-429). PMLR.

